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Abstract. We tackle distributed detection of a non-cooperative tar-
get with a Wireless Sensor Network (WSN) made of tiny and inex-
pensive sensor nodes. When the target is present, sensors observe an
(unknown) deterministic signal with attenuation depending on the dis-
tance between the sensor and the (unknown) target positions, multi-
plicative fading (accounting for both line-of-sight and non-line-of-sight
components), and additive Gaussian noise. To model energy-constrained
operations usually encountered in an Internet of Things (IoT) scenario,
local one-bit quantization of the raw measurement is performed at each
sensor. The Fusion Center (FC) receives quantized sensor observations
through error-prone binary symmetric channels and is in charge of per-
forming a more-accurate global decision. Such model leads to a two-sided
test with nuisance parameters (i.e. the target position xT ) observable
solely in the case of H1 hypothesis. After introducing the Generalized
Likelihood Ratio Test (GLRT) for the problem, the appealing Davies’
framework is exploited to design a generalized form of the Rao test
which obviates GLRT high complexity requirements. Equally important,
a rationale for threshold-optimization (resorting to a heuristic principle)
is proposed and confirmed via simulations. Finally, the aforementioned
rules are compared in terms of detection rate in practical scenarios.

Keywords: Data fusion · Decentralized detection · GLRT · IoT · Rao
test · Threshold optimization · Wireless sensor networks

1 Introduction

The Internet of Things (IoT) paradigm envisages billions of tiny devices with
sensing, computation, and communicating capabilities to be used in numerous
areas of everyday life [1]. These include Industry 4.0, smart cities and homes,
precision-agriculture, healthcare, surveillance and security [2], just to name a few.
In all these “verticals”, such devices are required to (a) measure the environment,
(b) allow interaction with the physical world and (c) use Internet infrastructure
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to provide services for data analytics, information transfer, and applications
usage [3]. Wireless Sensor Networks (WSNs) constitute the sensing & actuation
arm of the IoT and have attracted significant interest thanks to their flexibility
and reduced costs [4,5]. Decentralized detection is a key collective inference task
for a WSN, which has been heavily investigated in the last decades [6].

Unfortunately, stringent bandwidth and energy constraints in WSNs hamper
full-precision reporting by sensors. As a consequence, each node usually reports
one bit to the Fusion Center (FC) regarding the inferred hypothesis. In such a
case, the optimal sensor-individual decision procedure (from both Bayesian and
Neyman-Pearson standpoints) corresponds to the local Likelihood-Ratio Test
(LRT) being quantized into one-bit [7,8]. Still, the design complexity of quan-
tizer thresholds grows exponentially [9,10] and, equally important, the evalua-
tion of sensor LRT is precluded by ignorance of target parameters [10]. Hence,
the bit reported is either the outcome of a naive quantization of the raw mea-
surement [11,12] or exemplifies the inferred binary-valued event (obtained via a
sub-optimal detection statistic [13]). In both situations, FC gathers sensors bits
and fuses them via a wisely-designed rule to improve (single-)sensor detection
capability.

The optimum strategy to fuse the sensors’ bits at the FC, under condi-
tional independence assumption, is a weighted sum, with weights depending on
unknown target parameters [6], except for some peculiar cases [14]. Then, sim-
ple fusion strategies, based on simple decisions’ count rule or simplifying sensing
model assumptions (at design stage), have been initially put forward to circum-
vent such unavailability [15–18]. Still, when the model is parametrically-specified
(with some parameters unknown), the FC is in charge to tackle a composite test
of hypotheses and the Generalized LRT (GLRT) is usually taken as the natu-
ral design solution [19]. Indeed, GLRT-based fusion of quantized data has been
extensively studied in WSN literature [12,20,21], especially for decentralized
detection of: (i) a cooperative target with unknown location, (ii) an uncoop-
erative target modelled by observation coefficients assumed known, and (iii)
an unknown source at unknown position (uncooperative target). Although case
(iii) represents the most interesting and challenging (due to the least knowledge
requirements), only a few works have recently dealt with it [11,21–23]. In [21],
a GLRT was derived for revealing a target with unknown position and emit-
ted power and compared to the so-called counting rule, the optimum rule and
a GLRT aware of of target emitted power, showing a marginal loss of the pro-
posed rule with respect to the latter GLRT form. Unfortunately, the designed
GLRT requires a grid search on both the target location and emitted power (or
signal) domains. Therefore, as a computationally simpler solution, generalized
forms of score tests have been proposed for non-cooperative detection of either
deterministic [11] or stochastic target emissions [23].

More recently, [24] and [25] have recently addressed the challenging multi-
plicative fading scenario in a decentralized estimation and detection problems.
The latter setup indeed can be seen a generalization of both deterministic and
stochastic emission models, and is able to model complicated propagation mech-
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anisms, such as Rician models or imperfectly-estimated small-scale fading. How-
ever, for the multiplicative fading scenario, only the simpler case (ii) has been
addressed (namely, detecting an unknown source with known observation coef-
ficients).

To fill this gap, we focus on decentralized detection of a non-cooperative tar-
get with a spatially-dependent emission (signature), with emitted signal mod-
elled as unknown and deterministic (as opposed to [22,23]). More specifically, the
received signal at each individual sensor experiences multiplicative fading, addi-
tive Gaussian noise, and a deterministic Amplitude Attenuation Function (AAF)
depending on the sensor-target distance. Each sensor observes a local measure-
ment on the absence/presence of the target and transmits a single bit version
to a FC, over noisy reporting channels (modelled as Binary Symmetric Chan-
nels, BSCs, to emulate low-energy communications), having the task of a global
(more accurate) decision output. The problem considered is a two-sided param-
eter test with nuisance parameters present only under the alternative hypothesis
[26], which thus precludes the application of usual score-based tests, such as the
Rao test [19]. In order to reduce the computational complexity required by the
GLRT, the FC is designed to adopt a (simpler) sub-optimal fusion rule based
on a generalization of the Rao test [11], and a novel quantizer threshold design
is proposed herein, based on a heuristic rationale developed resorting to the
performance of Position-Clairvoyant (PC) Rao in asymptotic form. The result-
ing design is sensor-individual, considers the channel status between each sensor
and the FC, and depends upon neither the target strength nor its position, thus
allowing offline computation. More important, we show zero-threshold choice
is optimal according to the latter criterion. Finally, simulation results are pro-
vided to compare these rules in terms of performance and complexity in practical
scenarios.

Paper Organization: Section 2 describes the system model; Sect. 3 devel-
ops GLR and G-Rao tests for the problem introduced; then, Sect. 4 focuses
on optimization of the quantizer; numerical results are reported and discussed
in Sect. 5; finally, concluding remarks (briefly highlighting further directions of
research) are provided in Sect. 6.

List of Employed Math Notations: Bold letters in lower-case indicate vec-
tors, with an representing the nth component of a; E{·} and (·)T are the expec-
tation and transpose operators, respectively; the unit (Heaviside) step function is
denoted with; p(·) and P (·) differentiate probability density functions (pdf) and
probability mass functions (pmf), respectively; we denote a Gaussian pdf having
mean μ and variance σ2 with N (μ, σ2) is used to; Q(·) (resp. pN (·)) denotes the
complement of the cumulative distribution function (resp. the pdf) of a normal
random variable in its standard form, i.e. N (0, 1); finally, the symbol ∼ (resp.
a∼) corresponds to “distributed as” (resp. to “asymptotically distributed as”).



266 D. Ciuonzo and P. Salvo Rossi

2 System Model

We focus on a binary test of hypotheses in which a set of nodes k ∈ K �
{1, . . . , K} is displaced to monitor a given area to decide the absence (H0) or
presence (H1) of a non-cooperative source with incompletely-specified spatial
signature, and signal attenuation depending on the sensor-source distance and
multiplicative fading, namely:{

H0 : zk = wk

H1 : zk = g(xT ,xk)hk θ + wk

, (1)

In other terms, when the target is present (i.e. H1), we assume that its radi-
ated signal θ, modelled as unknown deterministic, is isotropic and experiences
(distance-dependent) path-loss, multiplicative fading and additive noise, before
reaching individual sensors. In the test of hypotheses in Eq. (1), zk ∈ R denotes
the observation of kth sensor, whereas wk ∼ N (0, σ2

w,k) and hk ∼ N (1, σ2
h,k) the

measurement noise and the multiplicative fading term, respectively. Additionally,
xT ∈ R

d denotes the unknown position of the target, while xk ∈ R
d denotes the

known kth sensor position (obtained via standard self-localization procedures).
Both xT and xk uniquely determine the value of g(xT ,xk), generically denoting
the AAF. We underline that we do not place any specific restriction regarding
the AAF modelling the spatial signature of the target to be detected. In view of
the spatial separation of the sensors, we hypothesize that the contributions due
to noise and fading terms wks and hks are statistically independent.

Accordingly, the measured signal zk is conditionally distributed as:{
zk|H0 ∼ N (0, σ2

w,k)

zk|H1 ∼ N
(
g(xT ,xk) θ, g2(xT ,xk)σ2

h,k θ2 + σ2
w,k

) , (2)

Then, to cope with stringent energy and bandwidth budgets in realistic IoT
scenarios, the kth sensor quantizes zk within one bit of information, i.e. dk �
u (zk − τk), k ∈ K, where τk represents the quantizer threshold (to be designed).
For simplicity, we confine the focus of this paper to deterministic quantizers,
while leaving the investigation of probabilistic quantizers to future studies. Addi-
tionally, with the aim of modeling a reporting phase with constrained energy,
we assume that kth sensor bit dk is transmitted over a BSC to the FC. Hence,
due to non-ideal transmission, a possibly-erroneous d̂k �= dk may be observed.
In detail, we assume that bit flipping d̂k = (1 − dk) may occur with probability
Pe,k, standing for the known bit-error probability of kth link. For notational
convenience, we collect the WSN decisions received by the FC compactly as
d̂ �

[
d̂1 · · · d̂K

]T
.

In view of the aforementioned assumptions, the bit probability under H1 is
given by

αk(θ,xT ) � (1 − Pe,k)βk(θ,xT ) + Pe,k(1 − βk(θ,xT )), (3)
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where βk(θ,xT ) � Q([τk − g(xT ,xk) θ]/
√

g2(xT ,xk)σ2
h,k θ2 + σ2

w,k). On the

other hand, the bit probability when H0 holds is obtained as αk,0 � αk(θ =
0,xT ) (see Eq. (3)), simplifying into:

αk,0 = (1 − Pe,k)βk,0 + Pe,k(1 − βk,0), (4)

where βk,0 � βk(θ = 0,xT ) = Q(τk/
√

σ2
w,k).

We highlight that the unknown target position xT can be observed at the FC
only when the signal is present, i.e. θ �= θ0 (θ0 = 0). Thus, we cast the problem
as a two-sided parameter where parameters of nuisance (xT ) are identifiable only
under H1 [26]. In this paper, the pair {H0,H1} corresponds to {θ = θ0, θ �= θ0}.
The objective of our study is tantamount to a simple test derivation (from a
computational viewpoint) deciding for H0 (resp. H1) when the statistic Λ(d̂) is
below (resp. above) the threshold γfc, and the design of the quantizer (i.e. an
optimized τk, k ∈ K) for each sensor.

Accordingly, we will evaluate FC system performance through the well-known
detection (PD � Pr{Λ > γfc|H1}) and false alarm (PF � Pr{Λ > γfc|H0}) prob-
abilities, respectively. In the previous definitions Λ denotes the generic decision
statistic implemented at the FC.

3 Fusion Rules

The GLR represents a widespread technique for composite hypothesis testing
[21], with its implicit form given by

ΛGLR(d̂) � 2 ln

[
P (d̂; θ̂1, x̂T )

P (d̂; θ0)

]
, (5)

where P (d̂; θ,xT ) represents the decision vector likelihood as a function of
(θ,xT ). On the other hand, (θ̂1, x̂T ) are the Maximum Likelihood (ML) esti-
mates under H1, i.e.

(θ̂1, x̂T ) � arg max
(θ,xT )

P (d̂; θ,xT ), (6)

with lnP (d̂; θ,xT ) being the logarithm of the likelihood function vs. (θ,xT ),
whose explicit form is [21,22]

lnP (d̂; θ,xT ) =
K∑

k=1

{
d̂k ln [αk(θ,xT ))] + (1 − d̂k) ln [1 − αk(θ,xT )]

}
, (7)

and an analogous functional holds for lnP (d̂; θ0) by substituting αk(θ,xT )) →
αk,0. It is clear from Eq. (5) that ΛGLR requires a maximization problem to
be tackled. Sadly, an explicit expression for the pair (θ̂1, x̂T ) is not available.
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This increases GLR complexity, since grid discretization of (θ,xT ) is usually
leveraged, see e.g. [21].

On the other hand, Davies’ work represents an alternative approach for cap-
italizing the two-sided nature of the considered hypothesis test [26], allowing
to generalize Rao test to the more challenging scenario of nuisance parameters
observed only under H1. In fact, Rao test is based on ML estimates of nuisances
under H0 [19], that sadly cannot be obtained, because they are not observable
in our case. In detail, if xT were available, Rao fusion rule would represent an
effective, yet simple, fusion statistic for the corresponding problem testing a
two-sided hypothesis [19]. Unfortunately, since xT is not known in the present
setup, we rather obtain a Rao statistics family by varying such parameter. Such
technical difficulty is overcome by Davies through the use of the supremum of
the family as the decision statistic, that is:

ΛGRao � max
xT

(
∂ lnP (d̂;θ,xT )

∂θ

)2
∣∣∣∣
θ=θ0

I(θ0,xT )
, (8)

where I(θ,xT ) � E

{(
∂ ln

[
P (d̂; θ,xT )

]
/∂θ

)2
}

represents the Fisher Informa-

tion (FI) assuming xT known. Henceforth, the above decision test will be referred
to as Generalized Rao (G-Rao), to highlight the usage of Rao as the basic statis-
tic within the umbrella proposed by Davies [22]. The closed form of ΛGRao is
drawn resorting to the explicit forms of the score function and the FI, as stated
via the following lemmas, whose proof is omitted for brevity.

Lemma 1. The score function ∂ ln
[
P (d̂; θ,xT )

]
/∂θ for decentralized detection

a non-cooperative target model with multiplicative fading obeys the following
expression:

∂ ln
[
P

(
d̂ ; θ,xT

)]
∂θ

=
K∑

k=1

{
d̂k − αk(θ,xT )

αk(θ,xT )[1 − αk(θ,xT )]
(1 − 2Pe,k)×

pN

⎛
⎝ τk − g(xT ,xk) θ√

g2(xT ,xk)σ2
h,k θ2 + σ2

w,k

⎞
⎠ g(xT ,xk)σ2

w,k + g2(xT ,xk)σ2
h,k θ τk

(σ2
w,k + g2(xT ,xk)σ2

h,k θ2)3/2

⎫⎬
⎭ (9)

Proof. The proof can be obtained analogously as [11] by exploiting in the deriva-
tive calculation the separable form expressed by Eq. (7).

Lemma 2. The FI I(θ,xT ) for decentralized detection a non-cooperative target
model with multiplicative fading has the following closed form:

I(θ,xT ) =
K∑

k=1

ψk(θ,xT ) g2(xT ,xk), (10)
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where the following auxiliary definition has been employed

ψk(θ,xT ) � (1 − 2Pe,k)2

αk(θ,xT ) [1 − αk(θ,xT )]
(11)

×
{

σ2
w,k + g(xT ,xk)σ2

h,k θ τk

}2

(σ2
w,k + g2(xT ,xk)σ2

h,k θ2)3
p2N

⎛
⎝ τk − g(xT ,xk) θ√

g2(xT ,xk)σ2
h,k θ2 + σ2

w,k

⎞
⎠ .

Proof. The proof can be obtained analogously as [11], exploiting conditional
independence of decisions (which implies an additive FI form) and similar deriva-

tion results as
∂ ln[P( ̂d ;θ,xT )]

∂θ .
Then, combining the results in (9) and (10), the G-Rao statistic is obtained

in the final form as
ΛGRao(d̂) � max

xT

ΛRao( d̂,xT ), (12)

where

ΛRao

(
d̂,xT

)
=

∑K
k=1 ν̂k(d̂k) g(xT ,xk)√∑K

k=1 ψk,0 g2(xT ,xk)
, (13)

is the Rao statistic when xT is assumed known, and we have employed ν̂k(d̂k) �
(d̂k − αk,0)Ξk, ψk,0 � αk,0 (1 − αk,0)Ξ2

k and

Ξk � (1 − 2Pe,k)
αk,0 (1 − αk,0)

1
σw,k

pN

⎛
⎝ τk√

σ2
w,k

⎞
⎠ , (14)

as compact auxiliary definitions. We motivate the attractiveness of G-Rao with
a lower (resp. a simpler) complexity (resp. implementation), as we do not require
θ̂1, and only a grid search with respect to xT is imposed, that is

ΛGRao(d̂) ≈ max
i=1,...NxT

ΛRao(d̂,xT [i]). (15)

Hence, the complexity of its implementation scales as O (K NxT
), which implies

a significant reduction of complexity with respect to the GLR (corresponding to
O (K NxT

Nθ)).

It is evident that ΛGRao (the same applies to ΛGLR, see Eqs. (5) and (13))
depends on τk’s, via the terms ν̂k(d̂k) and ψk,0, k ∈ K. Hence the threshold
set, gathered within τ �

[
τ1 · · · τK

]T , can be designed to optimize performance.
Next section is devoted to accomplish this purpose.

4 Design of Quantizers

We point out that the rationale in [12,27] cannot be applied to design (asymptoti-
cally) optimal deterministic quantizers, since no closed-form performance expres-
sions exist for tests built upon Davies approach [26]. In view of this reason, we
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use a modified rationale with respect to [12,27] (that is resorting to a heuristic,
yet intuitive, basis) and demonstrate its effectiveness in Sect. 5 through simula-
tions, as done for similar uncooperative target detection problems in [11,23]. In
detail, it is well known that the (position xT ) clairvoyant Rao statistic ΛRao is
distributed (under an asymptotic, weak-signal, assumption1) as [19]

ΛRao(xT , τ ) a∼
{

χ2
1 under H0

χ
′2
1 (λQ(xT )) under H1

, (16)

where the non-centrality parameter λQ(xT ) � (θ1 − θ0)2 I(θ0,xT ) (underlining
dependence on xT ) is given as:

λQ(xT ) = θ21

K∑
k=1

ψk,0 g2(xT ,xk) , (17)

with θ1 being the true value under H1. Clearly the larger λQ(xT ), the better the
xT −clairvoyant GLR and Rao tests will perform when the target to be detected
is located at xT . Also, it is apparent that λQ(xT ) is a function of τk, k ∈ K
(because of the ψk,0’s). For this reason, with a slight abuse of notation we will
use λQ(xT , τ ) and choose the threshold set τ to maximize λQ(xT , τ ), that is

τ � � argmax
τ

λQ(xT , τ ) (18)

In general, such optimization would lead to a τ � that will be dependent on xT

(and thus not practical).
Still, for this particular problem, the optimization requires only the solution

of K decoupled threshold designs (hence the optimization complexity presents
a linear scale with the number of sensors K), being also independent of xT (cf.
Eq. (17)), that is:

τ�
k = argmax

τk

⎧⎨
⎩ψk,0(τk) ∝

p2N
(
τk /

√
σ2

w,k

)
Δk + Q(τk/

√
σ2

w,k)
[
1 − Q(τk/

√
σ2

w,k)
]
⎫⎬
⎭ (19)

where Δk � [Pe,k (1−Pe,k)]/(1−2Pe,k)2. It is known from the quantized estima-
tion literature [28,29] that for Gaussian pdf it holds τ�

k � argmaxτk ψk,0(τk) = 0.
Also, it has been shown in [27] that τ�

k = 0 is still the optimal choice for any value
of Δk, which corresponds to different possibilities of noisy (Pe,k �= 0) reporting
channels. Therefore, we employ τ�

k = 0, k ∈ K, in Eq. (13), leading to the follow-
ing further simplified expression for threshold-optimized G-Rao test (denoted
with Λ�

GRao):

Λ�
GRao � max

xT

4
[∑K

k=1(1 − 2Pe,k) (1/σw,k) g(xT ,xk) (b̂k − 1
2 )

]2
∑K

k=1(1 − 2Pe,k)2 (1/σ2
w,k) g2(xT ,xk)

(20)

1 That is |θ1 − θ0| = c/
√

K for a certain value c > 0 [19].
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which is considerably simpler than the GLRT, as it obviates solution of a joint
optimization problem w.r.t. (xT , θ). Furthermore, the corresponding optimized
non-centrality parameter, denoted with λ�

Q(xT ), is given by:

λ�
Q(xT ) � 4θ21

K∑
k=1

[
(1 − 2Pe,k)2 (1 / (2πσ2

w,k)) g(xT ,xk)2
]
. (21)

5 Simulation Results

Accordingly, in this section we delve into performance comparison of G-Rao
and GLR tests. Additionally, we will provide an assessment of the threshold-
optimization developed in Sect. 4. With this aim, a 2-D area (xT ∈ R

2) is con-
sidered, in which the presence of a non-cooperative target in the surveillance
region A � [0, 1]2 (i.e. a square) is monitored by a WSN composed of K = 49
sensor nodes. For simplicity the sensors are arranged according to a regular
square grid which covers the whole A. With reference to the sensing model, we
assume wk ∼ N (0, σ2

w), k ∈ K (also w.l.o.g. we set σ2
w = 1). Also, the AAF cho-

sen is g(xT ,xk) � 1 /
√

1 + (‖xT − xk‖ / η)α (i.e. a power-law), where we have
set η = 0.2 (viz. approximate target extent) and α = 4 (viz. decay exponent).
Finally, we define the target Signal-To-Noise Ratio (SNR), including multiplica-
tive fading effects, as SNR � 10 log10(θ2 (1 + σ2

h) /σ2
w) and the LoS/NLoS ratio

as κ � 10 log10(1 /σ2
h). Initially, we assume ideal BSCs, i.e. Pe,k = 0, k ∈ K.

According to Sect. 3, the implementation of ΛGLR and ΛGRao leverages grid
search for θ and xT . Specifically, the search space of the target signal θ is assumed
to be Sθ �

[−θ̄, θ̄
]
, where θ̄ > 0 is such that the SNR = 20dB. The vector

collecting the points on the grid is then defined as
[−gT

θ 0 gT
θ

]T
, where gθ col-

lects target strengths corresponding to the SNR dB values −10 : 2.5 : 20 (thus
Nθ = 25). Secondly, the search support of xT is naturally assumed to be coin-
cident with the monitored area, i.e. SxT

= A. Accordingly, the 2-D grid is the
result of sampling A uniformly with NxT

= N2
c points, where Nc = 100. The 2-D

grid points are then obtained by regularly sampling A with NxT
= N2

c points,
where Nc = 100. In this setup, the evaluation of G-Rao requires N2

c = 104

grid points, as opposed to N2
c Nθ = 2.5 × 105 points for GLR, i.e. a complexity

decrease of more than twenty times.
First, in Fig. 1 we show PD (under PF = 0.01) versus a common threshold

choice for all the sensors τk = τ , k ∈ K, for a target whose location is randomly
drawn according to a uniform distribution within A. We consider two LoS-NLos
conditions, namely κ = 0dB (moderate LoS component) and κ = 10dB (strong
LoS component), whereas we fix the sensing SNR = 10dB. It is apparent that
in both LoS-NLoS conditions the choice τ�

k = 0 represents a nearly-optimal
solution, since the optimal value of τ found numerically depends on the polarity
of θ, which is unknown. This both applies to GLR and G-Rao as well. We then
proceed with the choice τ�

k = 0 in following results.
Secondly, in Fig. 2 we provide a PD comparison (for PF = 0.01) of considered

rules (for a target whose position is randomly generated within A at each run,
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Fig. 1. PD vs τk = τ , PF = 0.01; WSN with K = 49 sensors, Pe,k = 0, SNR = 10dB,
κ ∈ {0, 10} (amplitude signal θ with positive/negative polarity).

similarly as Fig. 1) versus SNR (dB), in order to assess their detection sensitivity
as a function of the received signal strength of the non-cooperative target. We
consider two relevant scenarios of LoS-NLos ratio, namely κ ∈ {0, 10}dB, and
different quality of the BSC (Pe,k = Pe ∈ {0, 0.1}). From inspection of the figure,
we conclude that both rules perform very similarly for a, different LoS-NLos
conditions, varying reporting channel status, and over the whole SNR range.

Thirdly, in Fig. 3, we report PD (under PF = 0.01) profile vs. target location
xT (for SNR = 5dB and κ ∈ 0 dB, Pe,k = 0), to draw a detailed overview of
detection capabilities over the whole monitored area A and underline possibly
blind spots. Remarkably, G-Rao test performs only negligibly worse than the
GLRT, and moderately worse in comparison to a test based on θ-clairvoyant
GLR. Unfortunately, the latter assumes the unrealistic knowledge of θ and thus
merely constitutes an upper-limiting bound on performance achievable. Finally,
we notice that both GLR and G-Rao have a similar PD(xT ) profile, and its
“shape” highlights a lower detection rate at the edge of the monitored area.
Such result can be ascribed to the regularity of the WSN arrangement in the
monitored area A.

6 Concluding Remarks and Further Directions

In this paper, a distributed scheme using a WSN for detection of a non-
cooperative target was developed. More specifically, we considered a target
emitting an unknown deterministic signal (θ) at unknown location (xT ), and
designed a generalized version of the Rao test (G-Rao) as an attractive (low-
complexity) alternative to GLRT (the latter requiring a grid search on the whole
space (θ,xT )) for a general model with (i) multiplicative fading, (ii) quantized
measurements, (iii) non-ideal and non-identical BSCs. Since xT is a nuisance
parameter present only under H1 (i.e. when θ �= 0), the G-Rao statistic arises
from maximization (w.r.t. xT ) of a family of Rao decision statistics, obtained
by assuming xT known, based on the framework proposed by [26].
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Fig. 2. PD0 vs. sensing SNR (dB), when the FC false-alarm probability is set to PF0 ∈
0.01. A WSN with K = 49 sensors is considered, with sensor thresholds set as τ�
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whose decisions are sent over BSCs with Pe,k = Pe ∈ {0, 0.1} and with κ ∈ {0, 10} (dB).
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Fig. 3. G-Rao (left), GLR (center) and θ-clairvoyant GLR (right) PD heatmaps vs.
source position xT , when the FC false-alarm probability is set to PF = 0.01. A WSN
with K = 49 sensors, having sensing SNR = 5dB and κ = 0 (dB) is considered. Corre-
sponding decisions are sent over BSCs with Pe,k = 0.1. The sensor thresholds are set
as τ�

k = 0.
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Furthermore, we developed an effective criterion (originating from per-
formance expressions having a semi-theoretical background) to design sensor
thresholds of G-Rao in an optimized fashion, resulting in a zero-threshold choice.
This result was leveraged to optimize the performance of G-Rao and GLR tests.
Numerical results underlined the close performance of G-Rao test to the GLRT in
the scenarios investigated, and a small (yet reasonable) loss of G-Rao compared
to a test based on θ-clairvoyant GLR. Also, it was shown through simulations
that the G-Rao test, achieves practically the same performance as the GLRT in
the cases considered.

Our future work will consist of investigating design of fusion rules in more
challenging target scenarios, such as multiple moving sources, multi-bit quantiz-
ers and burstiness (time-correlation) of reporting channels.
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